Efficient removal of ciprofloxacin from aqueous solution using Zn-C battery derived graphene oxide enhanced by hydrogen bonding, electrostatic and π-π interaction

利用氢键、静电和 π-π 相互作用增强的 Zn-C 电池衍生的氧化石墨烯从水溶液中有效去除环丙沙星

阅读:7
作者:Sabina Yasmin, Md Golam Azam, Md Sanwar Hossain, Umme Sarmeen Akhtar, Md Humayun Kabir

Abstract

In this study, graphene oxide (GO) derived from waste Zinc-Carbon (Zn-C) batteries was proposed for the efficient removal of antibiotics from the aqueous solution. Ciprofloxacin (CIP) antibiotic was selected as a typical contaminants. GO was prepared via an economical and environment-friendly route by using carbon rods from waste Zn-C batteries as the precursor. Characterization techniques were applied to determine the properties of as prepared GO. Effects of pH, contact time, and adsorbent dose on the adsorption were explored, and an optimum condition was established. Adsorption equilibrium was established in just 20 min for maximum removal of CIP (99.0%) at pH 5.7 for the adsorbent dose of 20 mg L-1 and at the initial concentration of CIP 2.0 mg L-1. The rapid and efficient removal of CIP was greatly influenced by the electrostatic attractions, pi-pi interactions and hydrogen bonding on the surface and edge of GO which was also proved by density functional theory (DFT). Langmuir model showed the best fit among the isotherm models and the calculated maximum adsorption capacity (qm) was 419.62 mg g-1 at 30°C. The kinetic studies also revealed that the adsorption process followed the pseudo-second-order model. The endothermic and spontaneous nature of adsorption was evaluated in thermodynamic studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。