The Transmembrane Domain of a Bicomponent ABC Transporter Exhibits Channel-Forming Activity

双组分 ABC 转运蛋白的跨膜结构域表现出通道形成活性

阅读:12
作者:Mohammad M Mohammad, Noriko Tomita, Makoto Ohta, Liviu Movileanu

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that expresses two unique forms of lipopolysaccharides (LPSs) on its bacterial surface, the A- and B-bands. The A-band polysaccharides (A-band PSs) are thought to be exported into the periplasm via a bicomponent ATP-binding cassette (ABC) transporter located within the inner membrane. This ABC protein complex consists of the transmembrane (TMD) Wzm and nucleotide-binding (NBD) Wzt domain proteins. Here, we were able to probe ∼1.36 nS-average conductance openings of the Wzm-based protein complex when reconstituted into a lipid membrane buffered by a 200 mM KCl solution, demonstrating the large-conductance, channel-forming ability of the TMDs. In agreement with this finding, transmission electron microscopy (TEM) imaging revealed the ring-shaped structure of the transmembrane Wzm protein complex. As hypothesized, using liposomes, we demonstrated that Wzm interacts with Wzt. Further, the Wzt polypeptide indeed hydrolyzed ATP but exhibited a ∼75% reduction in the ATPase activity when its Walker A domain was deleted. The distribution and average unitary conductance of the TMD Wzm protein complex were altered by the presence of the NBD Wzt protein, confirming the regulatory role of the latter polypeptide. To our knowledge, the large-conductance, channel-like activity of the Wzm protein complex, although often hypothesized, has not previously been demonstrated. These results constitute a platform for future structural, biophysical, and functional explorations of this bicomponent ABC transporter.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。