Critical Role of the Presynaptic Protein CAST in Maintaining the Photoreceptor Ribbon Synapse Triad

突触前蛋白 CAST 在维持感光带突触三联体中的关键作用

阅读:5
作者:Akari Hagiwara, Ayako Mizutani, Saki Kawamura, Manabu Abe, Yamato Hida, Kenji Sakimura, Toshihisa Ohtsuka

Abstract

The cytomatrix at the active zone-associated structural protein (CAST) and its homologue, named ELKS, being rich in glutamate (E), leucine (L), lysine (K), and serine (S), belong to a family of proteins that organize presynaptic active zones at nerve terminals. These proteins interact with other active zone proteins, including RIMs, Munc13s, Bassoon, and the β subunit of Ca2+ channels, and have various roles in neurotransmitter release. A previous study showed that depletion of CAST/ELKS in the retina causes morphological changes and functional impairment of this structure. In this study, we investigated the roles of CAST and ELKS in ectopic synapse localization. We found that the involvement of these proteins in ribbon synapse distribution is complex. Unexpectedly, CAST and ELKS, in photoreceptors or in horizontal cells, did not play a major role in ribbon synapse ectopic localization. However, depletion of CAST and ELKS in the mature retina resulted in degeneration of the photoreceptors. These findings suggest that CAST and ELKS play critical roles in maintaining neural signal transduction in the retina, but the regulation of photoreceptor triad synapse distribution is not solely dependent on their actions within photoreceptors and horizontal cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。