Derrone Targeting the TGF Type 1 Receptor Kinase Improves Bleomycin-Mediated Pulmonary Fibrosis through Inhibition of Smad Signaling Pathway

靶向 TGF 1 型受体激酶的 Derrone 通过抑制 Smad 信号通路改善博来霉素介导的肺纤维化

阅读:6
作者:Ilandarage Menu Neelaka Molagoda, Sobarathne Senel Sanjaya, Kyoung Tae Lee, Yung Hyun Choi, Joyce H Lee, Mi-Hwa Lee, Chang-Hee Kang, Chang-Min Lee, Gi-Young Kim

Abstract

Transforming growth factor-β (TGF-β) has a strong impact on the pathogenesis of pulmonary fibrosis. Therefore, in this study, we investigated whether derrone promotes anti-fibrotic effects on TGF-β1-stimulated MRC-5 lung fibroblast cells and bleomycin-induced lung fibrosis. Long-term treatment with high concentrations of derrone increased the cytotoxicity of MRC-5 cells; however, substantial cell death was not observed at low concentrations of derrone (below 0.05 μg/mL) during a three-day treatment. In addition, derrone significantly decreased the expressions of TGF-β1, fibronectin, elastin, and collagen1α1, and these decreases were accompanied by downregulation of α-SMA expression in TGF-β1-stimulated MRC-5 cells. Severe fibrotic histopathological changes in infiltration, alveolar congestion, and alveolar wall thickness were observed in bleomycin-treated mice; however, derrone supplementation significantly reduced these histological deformations. In addition, intratracheal administration of bleomycin resulted in lung collagen accumulation and high expression of α-SMA and fibrotic genes-including TGF-β1, fibronectin, elastin, and collagen1α1-in the lungs. However, fibrotic severity in intranasal derrone-administrated mice was significantly less than that of bleomycin-administered mice. Molecular docking predicted that derrone potently fits into the ATP-binding pocket of the TGF-β receptor type 1 kinase domain with stronger binding scores than ATP. Additionally, derrone inhibited TGF-β1-induced phosphorylation and nuclear translocations of Smad2/3. Overall, derrone significantly attenuated TGF-β1-stimulated lung inflammation in vitro and bleomycin-induced lung fibrosis in a murine model, indicating that derrone may be a promising candidate for preventing pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。