Autocrine regulation of wound healing by ATP release and P2Y2 receptor activation

通过 ATP 释放和 P2Y2 受体激活进行自分泌调节伤口愈合

阅读:5
作者:T B-D McEwan, R A Sophocleous, P Cuthbertson, K J Mansfield, M L Sanderson-Smith, R Sluyter

Aims

Application of exogenous nucleotides can modulate wound healing via the activation of purinergic receptors. However, evidence for the release of endogenous nucleotides and the subsequent activation of purinergic receptors in this process has not been well defined. Therefore, the current study aimed to investigate wound-mediated nucleotide release and autocrine purinergic signalling during HaCaT keratinocyte wound closure following scratch injury. Main

Methods

An in vitro scratch wound apparatus was employed to study wound healing over 24-h in the presence of modulators of ATP release, P2 receptors and pathways downstream of P2 receptor activation. Key findings: Adenosine 5'-triphosphate (ATP) was released from scratched cells. The ectonucleotidase apyrase and pharmacological inhibition of the nucleotide release hemichannel, pannexin-1, decreased wound closure over time. The non-selective P2Y receptor antagonist suramin and the selective P2Y2 receptor antagonist AR-C118925XX, but not other P2 antagonists, decreased wound closure. AR-C118925XX decreased wound closure in a concentration-dependent fashion. However, exogenous P2Y2 receptor agonists, ATP or uridine 5'-triphosphate, did not enhance wound closure. PCR and immunoblotting confirmed P2Y2 receptor expression in HaCaT cells. U73122, a phospholipase C antagonist, and 2-aminoethoxydiphenylborate, an inositol 1,4,5-trisphosphate receptor-sensitive Ca2+-release channel antagonist, decreased wound closure consistent with P2Y2 receptor activation. Absence of extracellular or intracellular Ca2+ or inhibition of intracellular Ca2+-release also impaired wound closure. Significance: These data describe a novel autocrine signalling mechanism in which wound-mediated release of endogenous ATP in response to mechanical scratching of HaCaT cells activates P2Y2 receptors to facilitate wound closure.

Significance

These data describe a novel autocrine signalling mechanism in which wound-mediated release of endogenous ATP in response to mechanical scratching of HaCaT cells activates P2Y2 receptors to facilitate wound closure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。