Predicting the effects of radiotherapy based on diffusion kurtosis imaging in a xenograft mouse model of esophageal carcinoma

基于扩散峰度成像预测食管癌异种移植小鼠模型的放射治疗效果

阅读:5
作者:An-Du Zhang, Xiao-Hua Su, Yan-Fei Wang, Gao-Feng Shi, Chun Han, Nan Zhang

Abstract

The aim of the present study was to assess the predictive value of diffusion kurtosis imaging (DKI) on the effects of radiotherapy in a xenograft model of esophageal cancer. A total of 40 tumor-bearing mice, established by injection of Eca-109 cells in nude mice, were used. The experimental group (n=24) received a single dose of 15 Gy (6 MV by X-ray), and the control group (n=16) did not receive any treatment. Tumor volume, apparent diffusion coefficient (ADC), mean kurtosis (MK) and mean diffusivity (MD) of the two groups were compared, and the expression of aquaporin (AQP) 3 and necrosis ratio at matched time points in xenografts were also observed. There was a significant difference between the two groups from the 7th day of radiotherapy onwards; the xenograft volume of the experimental group was significantly smaller compared with the control group (P<0.05). On the 3rd day, the ADC and MD of the experimental group was significantly higher compared with the control group, and MK was significantly lower compared with the control group (P<0.05). On the 3rd day, AQP3 expression in the experimental group was lower compared with the control group, and the proportion of necrotic cells was higher compared with the control group (P<0.05). Single large fraction dose radiotherapy inhibited the growth of a xenografted esophageal tumor. Changes in ADC, MK and MD were observed prior to morphological changes in the tumor. The change in AQP3 expression and necrosis ratio was in also agreement with the DKI parameters assessed. DKI may thus provide early predictive ability on the effect of radiotherapy in esophageal carcinoma.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。