RNA-binding FMRP and Staufen sequentially regulate the Coracle scaffold to control synaptic glutamate receptor and bouton development

RNA 结合 FMRP 和 Staufen 依次调节 Coracle 支架以控制突触谷氨酸受体和神经末梢的发育

阅读:8
作者:Chunzhu Song, Shannon N Leahy, Emma M Rushton, Kendal Broadie

Abstract

Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。