Spatial Metabolomics Identifies Distinct Tumor-Specific Subtypes in Gastric Cancer Patients

空间代谢组学识别胃癌患者中不同的肿瘤特异性亚型

阅读:5
作者:Jun Wang, Thomas Kunzke, Verena M Prade, Jian Shen, Achim Buck, Annette Feuchtinger, Ivonne Haffner, Birgit Luber, Drolaiz H W Liu, Rupert Langer, Florian Lordick, Na Sun, Axel Walch

Conclusions

Patient subtypes derived by tissue-based spatial metabolomics are a valuable addition to existing gastric cancer molecular classification systems. Metabolic differences between the subtypes and their associations with molecular features could provide a valuable tool to aid in selecting specific treatment approaches.

Purpose

Current systems of gastric cancer molecular classification include genomic, molecular, and morphological features. Gastric cancer classification based on tissue metabolomics remains lacking. This study aimed to define metabolically distinct gastric cancer subtypes and identify their clinicopathological and molecular characteristics. Experimental design: Spatial metabolomics by high mass resolution imaging mass spectrometry was performed in 362 patients with gastric cancer. K-means clustering was used to define tumor and stroma-related subtypes based on tissue metabolites. The identified subtypes were linked with clinicopathological characteristics, molecular features, and metabolic signatures. Responses to trastuzumab treatment were investigated across the subtypes by introducing an independent patient cohort with HER2-positive gastric cancer from a multicenter observational study.

Results

Three tumor- and three stroma-specific subtypes with distinct tissue metabolite patterns were identified. Tumor-specific subtype T1(HER2+MIB+CD3+) positively correlated with HER2, MIB1, DEFA-1, CD3, CD8, FOXP3, but negatively correlated with MMR. Tumor-specific subtype T2(HER2-MIB-CD3-) negatively correlated with HER2, MIB1, CD3, FOXP3, but positively correlated with MMR. Tumor-specific subtype T3(pEGFR+) positively correlated with pEGFR. Patients with tumor subtype T1(HER2+MIB+CD3+) had elevated nucleotide levels, enhanced DNA metabolism, and a better prognosis than T2(HER2-MIB-CD3-) and T3(pEGFR+). An independent validation cohort confirmed that the T1 subtype benefited from trastuzumab therapy. Stroma-specific subtypes had no association with clinicopathological characteristics, however, linked to distinct metabolic pathways and molecular features. Conclusions: Patient subtypes derived by tissue-based spatial metabolomics are a valuable addition to existing gastric cancer molecular classification systems. Metabolic differences between the subtypes and their associations with molecular features could provide a valuable tool to aid in selecting specific treatment approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。