Decreased pain threshold and enhanced synaptic transmission in the anterior cingulate cortex of experimental hypothyroidism mice

实验性甲状腺功能减退症小鼠的痛阈值降低和前扣带皮层突触传递增强

阅读:5
作者:Jun Yi, Jian-yong Zheng, Wei Zhang, Shan Wang, Zhi-fu Yang, Ke-feng Dou

Background

Thyroid hormones are essential for the maturation and functions of the central nervous system. Pain sensitivity is related to the thyroid status. However, information on how thyroid hormones affect pain processing and synaptic transmission in the anterior cingulate cortex (ACC) is limited. Nociceptive threshold and synaptic transmission in the ACC were detected in the experimental hypothyroidism (HT) mice.

Conclusions

These results suggest that HT promotes hypersensitivity to noxious thermal, and that supplementation with T3 or T4 rescues the imbalance between excitatory and inhibitory transmission in the ACC.

Results

HT was induced by methimazole and potassium perchlorate in distilled drinking water for 4 weeks. The threshold of pain perception to hot insults, but not mechanical ones, decreased in hypothyroid mice. After treatment with tri-iodothyronine (T3) or thyroxine (T4) for 2 weeks, thermal pain threshold recovered. Electrophysiological recordings revealed enhanced glutamatergic synaptic transmission and reduced GABAergic synaptic transmission in the ACC. Supplementation with T3 or T4 significantly rescued this synaptic transmission imbalance. In the same model, HT caused the up-regulation of the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and NR2B-containing N-methyl-D-aspartate receptors, but it down-regulated γ-aminobutyric acid A receptors in the ACC. Supplementation with T3 or T4 notably recovered the levels of above proteins. Conclusions: These results suggest that HT promotes hypersensitivity to noxious thermal, and that supplementation with T3 or T4 rescues the imbalance between excitatory and inhibitory transmission in the ACC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。