A Computationally Lightweight Algorithm for Deriving Reliable Metabolite Panel Measurements from 1D 1H NMR

一种计算轻量级算法,用于从 1D 1H NMR 中获取可靠的代谢物组测量值

阅读:7
作者:Panteleimon G Takis, Beatriz Jiménez, Nada M S Al-Saffar, Nikita Harvey, Elena Chekmeneva, Shivani Misra, Matthew R Lewis

Abstract

Small Molecule Enhancement SpectroscopY (SMolESY) was employed to develop a unique and fully automated computational solution for the assignment and integration of 1H nuclear magnetic resonance (NMR) signals from metabolites in challenging matrices containing macromolecules (herein blood products). Sensitive and reliable quantitation is provided by instant signal deconvolution and straightforward integration bolstered by spectral resolution enhancement and macromolecular signal suppression. The approach is highly efficient, requiring only standard one-dimensional 1H NMR spectra and avoiding the need for sample preprocessing, complex deconvolution, and spectral baseline fitting. The performance of the algorithm, developed using >4000 NMR serum and plasma spectra, was evaluated using an additional >8800 spectra, yielding an assignment accuracy greater than 99.5% for all 22 metabolites targeted. Further validation of its quantitation capabilities illustrated a reliable performance among challenging phenotypes. The simplicity and complete automation of the approach support the application of NMR-based metabolite panel measurements in clinical and population screening applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。