Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif

一些含有 1,3,4-恶二唑结构基序的新型 N-取代磺酰胺的细胞毒作用、酶抑制及计算机模拟研究

阅读:6
作者:Özcan Güleç, Cüneyt Türkeş, Mustafa Arslan, Yeliz Demir, Yeşim Yeni, Ahmet Hacımüftüoğlu, Ergün Ereminsoy, Ömer İrfan Küfrevioğlu, Şükrü Beydemir

Abstract

The acetylcholinesterase and carbonic anhydrase inhibitors (AChEIs and hCAIs) remain key therapeutic agents for many bioactivities such as anti-Alzheimer and antiobesity antiepileptic, anticancer, antiinfective, antiglaucoma, and diuretic effects. Here, it has been attempted to discover novel multi-target AChEIs and hCAIs that are highly potent, orally bioavailable, may be brain penetrant, and have higher effectiveness at lower doses than tacrine and acetazolamide. After detailed investigations both in vitro and in silico, novel N-substituted sulfonyl amide derivatives (6a-j) were determined to be highly potent inhibitors for AChE and hCAs (KIs are in the range of 23.11-52.49 nM, 18.66-59.62 nM, and 9.33-120.80 nM for AChE, hCA I, and hCA II, respectively). Moreover, according to the cytotoxic effect studies, such as the ADME-Tox, cortex neuron cells, and neuroblastoma SH-SY5Y cell line, compounds 6a, 6d, and 6h, which are the most potent representative versus the target enzymes, were identified as orally bioavailable, highly selective, and brain preferentially distributed AChEIs and hCAIs. The docking studies revealed precise binding modes between 6a, 6d, and 6h and hCA II, hCA I, and AChE, respectively. The results presented here might provide a solid basis for further investigation into more potent AChEIs and hCAIs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。