Liganded Thyroid Hormone Receptors Transactivate the DNA Methyltransferase 3a Gene in Mouse Neuronal Cells

配体的甲状腺激素受体激活小鼠神经元细胞中的 DNA 甲基转移酶 3a 基因

阅读:5
作者:Yasuhiro Kyono, Arasakumar Subramani, Preeti Ramadoss, Anthony N Hollenberg, Ronald M Bonett, Robert J Denver

Abstract

Thyroid hormone (T3) is essential for proper neurological development. The hormone, bound to its receptors, regulates gene transcription in part by modulating posttranslational modifications of histones. Methylation of DNA, which is established by the de novo DNA methyltransferase (DNMT)3a and DNMT3b, and maintained by DNMT1 is another epigenetic modification influencing gene transcription. The expression of Dnmt3a, but not other Dnmt genes, increases in mouse brain in parallel with the postnatal rise in plasma [T3]. We found that treatment of the mouse neuroblastoma cell line Neuro2a[TRβ1] with T3 caused rapid induction of Dnmt3a mRNA, which was resistant to protein synthesis inhibition, supporting that it is a direct T3-response gene. Injection of T3 into postnatal day 6 mice increased Dnmt3a mRNA in the brain by 1 hour. Analysis of two chromatin immunoprecipitation-sequencing datasets, and targeted analyses using chromatin immunoprecipitation, transfection-reporter assays, and in vitro DNA binding identified 2 functional T3-response elements (TREs) at the mouse Dnmt3a locus located +30.3 and +49.3 kb from the transcription start site. Thyroid hormone receptors associated with both of these regions in mouse brain chromatin, but with only 1 (+30.3 kb) in Neuro2a[TRβ1] cells. Deletion of the +30.3-kb TRE using CRISPR/Cas9 genome editing eliminated or strongly reduced the Dnmt3a mRNA response to T3. Bioinformatics analysis showed that both TREs are highly conserved among eutherian mammals. Thyroid regulation of Dnmt3a may be an evolutionarily conserved mechanism for modulating global changes in DNA methylation during postnatal neurological development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。