Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab

3D 和 2D 肿瘤模型的比较表明,3D 中 HER2 活化增强与曲妥珠单抗反应增强相关

阅读:8
作者:M Pickl, C H Ries

Abstract

Three-dimensional (3D) cell culture techniques are frequently used to model alterations in tissue architecture critically important for tumor development. Here, we report on a detailed comparison of a spheroid model of human epidermal growth factor receptor (HER2) overexpressing cancer cells with the traditional monolayer culture. In 2D culture, HER2 and HER3 form heterodimers, whereas in multicellular spheroids HER2 homodimers are formed. These homodimers localize in membrane rafts, resulting in enhanced inhibition of the proliferation of cancer cells with trastuzumab (Herceptin), a monoclonal antibody specifically targeting HER2. Within the tumor spheroids, HER2 homodimerization leads to enhanced activation of HER2 and results in a switch in signaling pathways from phosphoinositide 3-kinase (PI3K) to mitogen-activated protein kinase (MAPK). Diminished PI3K signaling is accompanied by the activation of the integrin beta4/Rac1/PAK 2 signaling cascade. We propose that the described 3D culture system may better reflect some in vivo aspects of HER signaling and can be used to further improve the understanding of the molecular mechanisms of trastuzumab action. Furthermore, the described human multicellular tumor spheroids may allow identification of new targets for the treatment of HER2-positive breast cancer patients who currently benefit suboptimally from trastuzumab treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。