Integrative network modeling reveals mechanisms underlying T cell exhaustion

整合网络建模揭示 T 细胞耗竭的潜在机制

阅读:4
作者:Hamid Bolouri, Mary Young, Joshua Beilke, Rebecca Johnson, Brian Fox, Lu Huang, Cristina Costa Santini, Christopher Mark Hill, Anne-Renee van der Vuurst de Vries, Paul T Shannon, Andrew Dervan, Pallavur Sivakumar, Matthew Trotter, Douglas Bassett, Alexander Ratushny

Abstract

Failure to clear antigens causes CD8+ T cells to become increasingly hypo-functional, a state known as exhaustion. We combined manually extracted information from published literature with gene expression data from diverse model systems to infer a set of molecular regulatory interactions that underpin exhaustion. Topological analysis and simulation modeling of the network suggests CD8+ T cells undergo 2 major transitions in state following stimulation. The time cells spend in the earlier pro-memory/proliferative (PP) state is a fixed and inherent property of the network structure. Transition to the second state is necessary for exhaustion. Combining insights from network topology analysis and simulation modeling, we predict the extent to which each node in our network drives cells towards an exhausted state. We demonstrate the utility of our approach by experimentally testing the prediction that drug-induced interference with EZH2 function increases the proportion of pro-memory/proliferative cells in the early days post-activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。