Molecular pathology of Sandhoff disease with p.Arg505Gln in HEXB: application of simulation analysis

HEXB 中 p.Arg505Gln 的 Sandhoff 病分子病理学:模拟分析的应用

阅读:7
作者:Naoko Yasui, Yutaka Takaoka, Hisahide Nishio, Dian K Nurputra, Kenji Sekiguchi, Hirotoshi Hamaguchi, Hisatomo Kowa, Eiichi Maeda, Aki Sugano, Kenji Miura, Toshiyuki Sakaeda, Fumio Kanda, Tatsushi Toda

Abstract

Sandhoff disease is a GM2 gangliosidosis caused by mutations in HEXB encoding the β-subunit of β-hexosaminidase A. β-Hexosaminidase A exists as a heterodimer consisting of α- and β-subunits, and requires a GM2 activator protein to hydrolyze GM2. To investigate the molecular pathology in an adult Sandhoff disease patient with an early disease onset, we performed mutation detection, western blot analysis and molecular simulation analysis. The patient had compound heterozygous mutations p.Arg505Gln and p.Ser341ValfsX30. Western blot analysis showed that the amount of mature form of the α- and β-subunits was markedly decreased in the patient. We then performed docking simulation analysis of the α- and β-subunits with p.Arg505Gln, the GM2AP/GM2 complex and β-hexosaminidase A, and GM2 and β-hexosaminidase A. Simulation analysis showed that p.Arg505Gln impaired each step of molecular conformation of the α- and β-subunits heterodimer, the activator protein and GM2. The results indicated that p.Ser341ValfsX30 reduced the amount of β-subunit, and that p.Arg505Gln hampered the maturation of α- and β-subunits, and hindered the catalytic ability of β-hexosaminidase A. In conclusion, various methods including simulation analysis were useful to understand the molecular pathology in Sandhoff disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。