Longitudinal live imaging of retinal α-synuclein::GFP deposits in a transgenic mouse model of Parkinson's Disease/Dementia with Lewy Bodies

帕金森病/路易体痴呆转基因小鼠模型中视网膜 α-突触核蛋白::GFP 沉积物的纵向实时成像

阅读:7
作者:Diana L Price, Edward Rockenstein, Michael Mante, Anthony Adame, Cassia Overk, Brian Spencer, Karen X Duong-Polk, Douglas Bonhaus, James Lindsey, Eliezer Masliah

Abstract

Abnormal α-synuclein (α-syn) accumulation in the CNS may underlie neuronal cell and synaptic dysfunction leading to motor and cognitive deficits in synucleinopathies including Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB). Multiple groups demonstrated α-syn accumulation in CNS accessory structures, including the eyes and olfactory terminals, as well as in peripheral organs of Parkinsonian patients. Retinal imaging studies of mice overexpressing fused α-syn::GFP were conducted to evaluate the presence and progression of retinal pathology in a PD/DLB transgenic mouse model. Bright-field image retinal maps and fluorescent images were acquired at 1-month intervals for 3 months. Retinal imaging revealed the accumulation of GFP-tagged α-syn in retinal ganglion cell layer and in the edges of arterial blood vessels in the transgenic mice. Double labeling studies confirmed that the α-syn::GFP-positive cells were retinal ganglion cells containing α-syn. Accumulation of α-syn persisted in the same cells and increased with age. Accumulation of α-syn::GFP was reduced by immunization with single chain antibodies against α-syn. In conclusion, longitudinal live imaging of the retina in the PDGF-α-syn::GFP mice might represent a useful, non-invasive tool to monitor the fate of α-syn accumulation in the CNS and to evaluate the therapeutic effects of compounds targeting α-syn.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。