RBP4 promotes denervation-induced muscle atrophy through STRA6-dependent pathway

RBP4 通过 STRA6 依赖性通路促进失神经支配引起的肌肉萎缩

阅读:4
作者:Kang-Zhen Zhang, Jia-Wen Li, Jin-Shui Xu, Zheng-Kai Shen, Yu-Shuang Lin, Can Zhao, Xiang Lu, Yun-Feng Rui, Wei Gao

Conclusions

In conclusion, our data reveal that RBP4 promotes fat infiltration and muscle atrophy through a STRA6-dependent and JAK2/STAT3 pathway-mediated mechanism in denervated skeletal muscle. Our results suggest that lowering RBP4 levels might serve as a promising therapeutic approach for prevention and treatment of muscle atrophy.

Methods

Denervation-induced muscle atrophy model was constructed in wild-type and RBP4 knockout mice. To modify the expression of RBP4, mice were received intramuscular injection of retinol-free RBP4 (apo-RBP4), retinol-bound RBP4 (holo-RBP4) or oral gavage of RBP4 inhibitor A1120. Holo-RBP4-stimulated C2C12 myotubes were treated with siRNAs or specific inhibitors targeting signalling receptor and transporter of retinol 6 (STRA6)/Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway. Fat accumulation, myofibre cross-sectional area, myotube diameter and the expression of muscle atrophy markers and myogenesis markers were analysed.

Results

The expression levels of RBP4 in skeletal muscles were significantly up-regulated more than 2-fold from 7 days and sustained for 28 days after denervation. Immunofluorescence analysis indicated that increased RBP4 was localized in the infiltrated fatty region in denervated skeletal muscles. Knockout of RBP4 alleviated denervation-induced fatty infiltration and muscle atrophy together with decreased expression of atrophy marker Atrogin-1 and MuRF1 as well as increased expression of myogenesis regulators MyoD and MyoG. By contrast, injection of retinol-bound holo-RBP4 aggregated denervation-induced ectopic fat accumulation and muscle atrophy. Consistently, holo-RBP4 stimulation also had a dose-dependent effect on the reduction of C2C12 myotube diameter and myofibre cross-sectional area, as well as on the increase of Atrogin-1and MuRF1 expression and decrease of MyoD and MyoG expression. Mechanistically, holo-RBP4 treatment increased the expression of its membrane receptor STRA6 (>3-fold) and promoted the phosphorylation of downstream JAK2 and STAT3. Inhibition of STRA6/JAK2/STAT3 pathway either by specific siRNAs or inhibitors could decrease the expression of Atrogin-1 and MuRF1 (>50%) and decrease the expression of MyoD and MyoG (>3-fold) in holo-RBP4-treated C2C12 myotube. RBP4 specific pharmacological antagonist A1120 significantly inhibited the activation of STRA6/JAK2/STAT3 pathway, ameliorated ectopic fat infiltration and protected against denervation-induced muscle atrophy (30% increased myofibre cross-sectional area) in mice. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。