Enhanced X-ray diffraction of in vivo-grown μNS crystals by viscous jets at XFELs

利用 XFEL 的粘性射流对体内生长的 μNS 晶体进行增强 X 射线衍射

阅读:4
作者:Nirupa Nagaratnam, Yanyang Tang, Sabine Botha, Justin Saul, Chufeng Li, Hao Hu, Sahba Zaare, Mark Hunter, David Lowry, Uwe Weierstall, Nadia Zatsepin, John C H Spence, Ji Qiu, Joshua LaBaer, Petra Fromme, Jose M Martin-Garcia

Abstract

μNS is a 70 kDa major nonstructural protein of avian reoviruses, which cause significant economic losses in the poultry industry. They replicate inside viral factories in host cells, and the μNS protein has been suggested to be the minimal viral factor required for factory formation. Thus, determining the structure of μNS is of great importance for understanding its role in viral infection. In the study presented here, a fragment consisting of residues 448-605 of μNS was expressed as an EGFP fusion protein in Sf9 insect cells. EGFP-μNS(448-605) crystallization in Sf9 cells was monitored and verified by several imaging techniques. Cells infected with the EGFP-μNS(448-605) baculovirus formed rod-shaped microcrystals (5-15 µm in length) which were reconstituted in high-viscosity media (LCP and agarose) and investigated by serial femtosecond X-ray diffraction using viscous jets at an X-ray free-electron laser (XFEL). The crystals diffracted to 4.5 Å resolution. A total of 4227 diffraction snapshots were successfully indexed into a hexagonal lattice with unit-cell parameters a = 109.29, b = 110.29, c = 324.97 Å. The final data set was merged and refined to 7.0 Å resolution. Preliminary electron-density maps were obtained. While more diffraction data are required to solve the structure of μNS(448-605), the current experimental strategy, which couples high-viscosity crystal delivery at an XFEL with in cellulo crystallization, paves the way towards structure determination of the μNS protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。