Mind your Ps: A probabilistic model to aid the interpretation of molecular epidemiology data

注意你的 Ps:辅助解释分子流行病学数据的概率模型

阅读:6
作者:Ana Raquel Penedos, Aurora Fernández-García, Mihaela Lazar, Kajal Ralh, David Williams, Kevin E Brown

Background

Assessing relatedness of pathogen sequences in clinical samples is a core goal in molecular epidemiology. Tools for Bayesian analysis of phylogeny, such as the BEAST software package, have been typically used in the analysis of sequence/time data in public health. However, they are computationally-, time-, and knowledge-intensive, demanding resources that many laboratories do not have available or cannot allocate frequently.

Methods

To evaluate a faster and simpler alternative method to support the routine interpretation of sequence data for epidemiology, we obtained sequences for two regions in the measles virus genome, N-450 and MF-NCR, from patient samples of genotypes B3, D4 and D8 taken between 2011 and 2017 in the UK and Romania. A mathematical model incorporating time, possible shared ancestry and the Poisson distribution describing the number of expected substitutions at a given time point was developed to exclude epidemiological relatedness between pairs of sequences. The model was validated against the commonly used Bayesian phylogenetic method using an independent dataset collected in 2017-19. Findings: We demonstrate that our model, using time and sequence information to predict whether two samples may be related within a given time frame, minimises the risk of erroneous exclusion of relatedness. An easy-to-use implementation in the form of a guide and spreadsheet is provided for convenient application. Interpretation: The proposed model only requires a previously calculated substitution rate for the locus and pathogen of interest. It allows for an informed but quick decision on the likelihood of relatedness between two samples within a time frame, without the need for phylogenetic reconstruction, thus facilitating rapid epidemiological interpretation of sequence data. Funding: This work was funded by the United Kingdom Health Security Agency (UKHSA). The World Health Organization European Regional Office funded Aurora Fernández-García and Mihaela Lazar training visits to UKHSA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。