Structural Characterization of Toxicologically Relevant Cd2+-L-Cysteine Complexes

毒理学相关的 Cd2+-L-半胱氨酸复合物的结构表征

阅读:6
作者:Astha Gautam, Amanda Gomez, Emérita Mendoza Rengifo, Graham N George, Ingrid J Pickering, Jürgen Gailer

Abstract

The exposure of humans to Cd exerts adverse human health effects at low chronic exposure doses, but the underlying biomolecular mechanisms are incompletely understood. To gain insight into the toxicologically relevant chemistry of Cd2+ in the bloodstream, we employed an anion-exchange HPLC coupled to a flame atomic absorption spectrometer (FAAS) using a mobile phase of 100 mM NaCl with 5 mM Tris-buffer (pH 7.4) to resemble protein-free blood plasma. The injection of Cd2+ onto this HPLC-FAAS system was associated with the elution of a Cd peak that corresponded to [CdCl3]-/[CdCl4]2- complexes. The addition of 0.1-10 mM L-cysteine (Cys) to the mobile phase significantly affected the retention behavior of Cd2+, which was rationalized by the on-column formation of mixed CdCysxCly complexes. From a toxicological point of view, the results obtained with 0.1 and 0.2 mM Cys were the most relevant because they resembled plasma concentrations. The corresponding Cd-containing (~30 μM) fractions were analyzed by X-ray absorption spectroscopy and revealed an increased sulfur coordination to Cd2+ when the Cys concentration was increased from 0.1 to 0.2 mM. The putative formation of these toxicologically relevant Cd species in blood plasma was implicated in the Cd uptake into target organs and underscores the notion that a better understanding of the metabolism of Cd in the bloodstream is critical to causally link human exposure with organ-based toxicological effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。