Characterization of a deazaflavin analog as a potent inhibitor of multidrug resistance-associated protein 1

去氮黄素类似物作为多药耐药相关蛋白 1 的有效抑制剂的表征

阅读:8
作者:Zakia Belhadj, Thamina Akther, Zhengqiang Wang, Jiashu Xie

Abstract

Selective inhibition of overexpressed ATP binding cassette (ABC) transporters is an attractive approach to enhancing the efficacy of chemotherapeutics in multidrug resistant cancers. Previously, we reported that the cancer sensitizing effect of deazaflavin analogs, an important chemotype for developing combination treatments with topoisomerase II (TOP2) poisons, is associated with increased intracellular drug accumulation. Here we report the characterization of ZW-1226, a deazaflavin analog, as a potent inhibitor of multidrug resistance-associated protein 1 (MRP1). Specifically, ZW-1226 inhibited MRP1 with a 16-fold higher potency than the most widely used positive control MK-571 in vesicular transport assay and displayed excellent selectivity indices exceeding 100 over other major ABC transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), MRP2 and MRP3. Mechanistically, we revealed that its MRP1 inhibitory action requires the participation of GSH. In chemo-sensitization test, ZW-1226 fully reversed the MRP1-mediated drug resistance to TOP2 poisons etoposide (ETP) and doxorubicin (DOX) in H69AR cells and conferred CC50s comparable to those in the sensitive parental NCI-H69 cells. The sensitization was associated with boosted intracellular accumulation of ETP and DOX and elevated endogenous GSH. Moreover, ZW-1226 showed potential to occupy the leukotriene C4 binding site in molecular docking with bovine MRP1, presumably with the help of GSH. Lastly, ZW-1226 exhibited high tissue to plasma partitions in mice but did not alter ETP distribution to normal tissues, suggesting it could be a viable lead with desirable pharmacokinetic properties to warrant further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。