Brain-targeting biomimetic disguised manganese dioxide nanoparticles via hybridization of tumor cell membrane and bacteria vesicles for synergistic chemotherapy/chemodynamic therapy of glioma

通过肿瘤细胞膜和细菌囊泡杂交实现脑靶向仿生伪装二氧化锰纳米粒子对胶质瘤进行协同化疗/化学动力学治疗

阅读:15
作者:Jiayu Yuan, Jingchen Wang, Mingzhu Song, Yuting Zhao, Yijie Shi, Liang Zhao

Abstract

Glioma is a prevalent brain malignancy associated with poor prognosis. Although chemotherapy serves as the primary treatment for brain tumors, its effectiveness is hindered by the limited ability of drugs to traverse the blood-brain barrier (BBB) and the development of drug resistance linked to tumor hypoxia. Herein, we report the creation of hybrid camouflaged multifunctional nanovesicles comprising membranes of tumor C6 cells (mT) and bacterial outer membrane vesicles (OMVs) and co-loaded with manganese dioxide nanoparticles (MnO2 NPs) and doxorubicin (DOX) to synergistically enhance the chemotherapy/chemodynamic therapy (CDT) of glioma. Owing to OMV-mediated BBB penetration and mT-inherited tumor-homing properties, MnO2-DOX@mT/OMVs can penetrate the BBB and enhance the tumor cell-specific uptake of DOX via "proton sponge effect"-mediated lysosomal escape. This enhances the apoptotic effect induced by DOX and minimizing DOX-associated cardiotoxicity by facilitating the accumulation of DOX at the tumor site. Furthermore, the MnO2 NPs in MnO2-DOX@mT/OMVs can generate potent CDT by accelerating the Fenton-like reaction with DOX-generated H2O2 and achieving glutathione (GSH)-depletion-induced glutathione peroxidase 4 (GPX4) inactivation. These results showed that MnO2-DOX@mT/OMVs, designed for brain tumor targeting, significantly inhibited tumor growth and exhibited favorable biological safety. This innovative approach offers the augmentation of anticancer treatment efficacy via a potential combination of chemotherapy and CDT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。