HMGA2-mediated glutamine metabolism is required for Cd-induced cell growth and cell migration

HMGA2 介导的谷氨酰胺代谢是 Cd 诱导的细胞生长和细胞迁移所必需的

阅读:10
作者:Yanqiu Yang, Chunpeng Gao, Qiujuan Li, Yong Liu, Jun Cao

Abstract

Cadmium (Cd) exposure significantly increases the risk of lung cancer. The demand for glutamine is increasing in cancers, including lung cancer. In this study, we investigated the role of glutamine metabolism in Cd-induced cell growth and migration. Firstly, we found that 2 μM Cd-treatment up-regulated the expression of ASCT2 (alanine, serine, cysteine-preferring transporter 2) and ASNS (asparagine synthetase) while downregulating mitochondrial glutaminase GLS1 in A549 cells. The same results were obtained in male BALB/c mice treated with 0.5 and 1 mg Cd/kg body weight. Subsequently, both glutamine deprivation and transfection with siASCT2 revealed that glutamine played a role in Cd-induced cell growth and migration. Furthermore, using 4-PBA (5 mM), an inhibitor of endoplasmic reticulum (ER) stress, Tm (0.1 μg/ml), an inducer of ER stress, siHMGA2, and over-expressing HMGA2 plasmids we demonstrated that ER stress/HMGA2 axis was involved in inducing ASCT2 and ASNS, while inhibiting GLS1. Additionally, the chromatin immunoprecipitation assay using an HMGA2 antibody revealed the direct binding of the HMGA2 to the promoter sequences of the ASCT2, ASNS, and GLS1 genes. Finally, dual luciferase reporter assay determined that HMGA2 increased the transcription of ASCT2 and ASNS while inhibiting the transcription of GLS1. Overall, we found that ER stress-induced HMGA2 controls glutamine metabolism by transcriptional regulation of ASCT2, ASNS and GLS1 to accelerate cell growth and migration during exposure to Cd at low concentrations. This study innovatively revealed the mechanism of Cd-induced cell growth which offers a fresh perspective on preventing Cd toxicity through glutamine metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。