Elucidation of Secondary Structure and Toxicity of α-Synuclein Oligomers and Fibrils Grown in the Presence of Phosphatidylcholine and Phosphatidylserine

在磷脂酰胆碱和磷脂酰丝氨酸存在下生长的 α-突触核蛋白寡聚体和原纤维的二级结构和毒性的阐明

阅读:3
作者:Tianyi Dou, Mikhail Matveyenka, Dmitry Kurouski

Abstract

Abrupt aggregation of α-synuclein (α-Syn) in the midbrain hypothalamus and thalamus is a hallmark of Parkinson's disease (PD), the fastest growing neurodegenerative pathology, projected to strike 12 million people by 2040 worldwide. In this study, we examine the effect of two phospholipids that are present in neuronal membranes, phosphatidylcholine (PC) and phosphatidylserine (PS), on the rate of α-Syn aggregation. We found that PS accelerated α-Syn aggregation, whereas PC strongly inhibited α-Syn aggregation. We also utilized the nano-infrared imaging technique, also known as atomic force microscopy infrared (AFM-IR) spectroscopy, to investigate whether PC and PS only change the rates or also modify the secondary structure of α-Syn aggregates. We found that both phospholipids uniquely altered the secondary structure of α-Syn aggregates present at the lag and growth phase, as well as the late stage of protein aggregation. In addition, compared to the α-Syn aggregates formed in the lipid-free environment, α-Syn:PC and α-Syn:PS aggregates demonstrated higher cellular toxicity to N27 rat neurons. Interestingly, both α-Syn:PC and α-Syn:PS aggregates showed similar levels of oxidative stress, but α-Syn:PC aggregates exhibited a greater degree of mitochondrial dysfunction compared to α-Syn:PS aggregates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。