The Extracellular Superoxide Dismutase Sod5 From Fusarium oxysporum Is Localized in Response to External Stimuli and Contributes to Fungal Pathogenicity

尖镰孢菌的细胞外超氧化物歧化酶 Sod5 在响应外部刺激时定位并导致真菌致病性

阅读:5
作者:Qiang Wang, Ambika Pokhrel, Jeffrey J Coleman

Abstract

Reactive oxygen species (ROS) produced by hosts serve as a general defense mechanism against various pathogens. At the interaction site between the host and pathogen, host cells rapidly accumulate high concentrations of ROS, called the oxidative burst, that damage and kill the invading microbes. However, successful pathogens usually survive in a high ROS environment and have evolved strategies to overcome these detrimental effects. Here we characterized the biological function of the extracellular superoxide dismutase (SOD) FoSod5 from Fusarium oxysporum f. sp. vasinfectum. FoSOD5 is strongly up-regulated during infection of cotton, and a ΔFoSOD5 mutant was significantly reduced in virulence on cotton. Purified 6 × His-FoSod5 could significantly inhibit the reduction of NBT and WST-1, indicating that FoSod5 was a functional SOD protein. Based on CRISPR/Cas9 technology, several different FoSod5 variants were generated and used to assess the secretion, expression, and subcellular localization of FoSod5 in F. oxysporum. The subcellular localization of FoSod5 is altered under different environmental conditions. During normal growth conditions, FoSod5 was primarily localized to the phialides; however, in a nutrient-limited environment, FoSod5 was localized to a wide array of fungal structures including the septum and cell wall. FoSod5 is an alkaline-induced glycosylphosphatidylinositol (GPI) protein and the GPI anchor was required for proper protein subcellular localization. The multiple mechanisms fungi utilize to tolerate the oxidative burst is indicative of the importance of this plant defense response; however, the presence of a conserved extracellular SOD in many phytopathogenic fungi suggests tolerance to ROS is initiated prior to the ROS entering the fungal cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。