Pharmacological stimulation of NQO1 decreases NADPH levels and ameliorates acute pancreatitis in mice

NQO1 的药理刺激可降低 NADPH 水平并改善小鼠急性胰腺炎

阅读:6
作者:AiHua Shen, Hyung-Jin Kim, Gi-Su Oh, Su-Bin Lee, SeungHoon Lee, Arpana Pandit, Dipendra Khadka, Subham Sharma, Seon Young Kim, Seong-Kyu Choe, Sei-Hoon Yang, Eun-Young Cho, Hyuk Shim, Raekil Park, Tae Hwan Kwak, Hong-Seob So

Abstract

Reactive oxygen species (ROS) regulates the activation of inflammatory cascades and tissue damage in acute pancreatitis. NADPH oxidase (NOX) is upregulated in pancreatitis and is one of the major enzymes involved in ROS production using NADPH as a general rate-limiting substrate. Dunnione, a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), reduces the ratio of cellular NADPH/NADP+ through the enzymatic action of NQO1. This study assessed whether a reduction in cellular NADPH/NADP+ ratio can be used to regulate caerulein-induced pancreatic damage associated with NOX-induced ROS production in animal models. Dunnione treatment significantly reduced the cellular NADPH/NADP+ ratio and NOX activity through the enzymatic action of NQO1 in the pancreas of the caerulein-injection group. Similar to these results, total ROS production and expressions of mRNA and protein for NOX subunits Nox1, p27phox, p47phox, and p67phox also decreased in the dunnione-treated group. In addition, caerulein-induced pancreatic inflammation and acinar cell injury were significantly reduced by dunnione treatment. This study is the first to demonstrate that modulation of the cellular NADPH:NADP+ ratio by enzymatic action of NQO1 protects acute pancreatitis through the regulation of NOX activity. Furthermore, these results suggest that modulation of the NADPH:NADP+ ratio in cells by NQO1 may be a novel therapeutic strategy for acute pancreatitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。