Adrenergic tone benefits cardiac performance and warming tolerance in two teleost fishes that lack a coronary circulation

肾上腺素能张力有利于缺乏冠状动脉循环的两种硬骨鱼的心脏功能和耐热性

阅读:5
作者:Andreas Ekström, Erika Sundell, Daniel Morgenroth, Erik Sandblom

Abstract

Tolerance to acute environmental warming in fish is partly governed by the functional capacity of the heart to increase systemic oxygen delivery at high temperatures. However, cardiac function typically deteriorates at high temperatures, due to declining heart rate and an impaired capacity to maintain or increase cardiac stroke volume, which in turn has been attributed to a deterioration of the electrical conductivity of cardiac tissues and/or an impaired cardiac oxygen supply. While autonomic regulation of the heart may benefit cardiac function during warming by improving myocardial oxygenation, contractility and conductivity, the role of these processes for determining whole animal thermal tolerance is not clear. This is in part because interpretations of previous pharmacological in vivo experiments in salmonids are ambiguous and were confounded by potential compensatory increases in coronary oxygen delivery to the myocardium. Here, we tested the previously advanced hypothesis that cardiac autonomic control benefits heart function and acute warming tolerance in perch (Perca fluviatilis) and roach (Rutilus rutilus); two species that lack coronary arteries and rely entirely on luminal venous oxygen supplies for cardiac oxygenation. Pharmacological blockade of β-adrenergic tone lowered the upper temperature where heart rate started to decline in both species, marking the onset of cardiac failure, and reduced the critical thermal maximum (CTmax) in perch. Cholinergic (muscarinic) blockade had no effect on these thermal tolerance indices. Our findings are consistent with the hypothesis that adrenergic stimulation improves cardiac performance during acute warming, which, at least in perch, increases acute thermal tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。