Novel roles for HMGA2 isoforms in regulating oxidative stress and sensitizing to RSL3-Induced ferroptosis in prostate cancer cells

HMGA2 亚型在调节氧化应激和对前列腺癌细胞中 RSL3 诱导的铁死亡敏感方面的新作用

阅读:5
作者:Taaliah Campbell, Ohuod Hawsawi, Veronica Henderson, Precious Dike, Bor-Jang Hwang, Yusuf Liadi, ElShaddai Z White, Jin Zou, GuangDi Wang, Qiang Zhang, Nathan Bowen, Derrick Scott, Cimona V Hinton, Valerie Odero-Marah

Abstract

Oxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs. truncated HMGA2 in prostate cancer (PCa). We analyzed the expression of wild-type vs. truncated HMGA2 and showed that prostate cancer patient tissue and some cell lines expressed increasing amounts of both wild-type and truncated HMGA2 with increasing tumor grade, compared to normal epithelial cells. RNA-Seq analysis of LNCaP prostate cancer cells stably overexpressing wild-type HMGA2 (HMGA2-WT), truncated HMGA2 (HMGA2-TR) or empty vector (Neo) control revealed that HMGA2-TR cells exhibited higher oxidative stress compared to HMGA2-WT or Neo control cells, which was also confirmed by analysis of basal reactive oxygen species (ROS) levels using 2', 7'-dichlorofluorescin diacetate (DCFDA) dye, the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and NADP/NADPH using metabolomics. This was associated with increased sensitivity to RAS-selective lethal 3 (RSL3)-induced ferroptosis that could be antagonized by ferrostatin-1. Additionally, proteomic and immunoprecipitation analyses showed that cytoplasmic HMGA2 protein interacted with Ras GTPase-activating protein-binding protein 1 (G3BP1), a cytoplasmic stress granule protein that responds to oxidative stress, and that G3BP1 transient knockdown increased sensitivity to ferroptosis even further. Endogenous knockdown of HMGA2 or G3BP1 in PC3 cells reduced proliferation which was reversed by ferrostatin-1. In conclusion, we show a novel role for HMGA2 in oxidative stress, particularly the truncated HMGA2, which may be a therapeutic target for ferroptosis-mediated prostate cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。