Metformin attenuates PM2.5-induced oxidative stress by inhibiting the AhR/CYP1A1 pathway in proximal renal tubular epithelial cells

二甲双胍通过抑制近端肾小管上皮细胞中的 AhR/CYP1A1 通路减轻 PM2.5 诱导的氧化应激

阅读:6
作者:Jing Cui, Weilin Chen, Dongdong Zhang, Mengqiu Lu, Zhijun Huang, Bin Yi

Abstract

The harmful effects of PM2.5 on human health, including an increased risk of chronic kidney disease (CKD), have raised a lot of attention, but the underlying mechanisms are unclear. We used the Shanghai Meteorological and Environmental Animal Exposure System (Shanghai-METAS) to simulate the inhalation of PM2.5 in the real environment and established an animal model by exposing C57BL/6 mice to filtered air (FA) and Particulate Matter (PM2.5) for 8 weeks. PM2.5 impaired the renal function of the mice, and the renal tubules underwent destructive changes. Analysis of NHANES data showed a correlation between reduced kidney function and higher blood levels of PM2.5 components, polychlorinated biphenyls (PCBs) and dioxins, which are Aryl hydrocarbon Receptor (AhR) ligands. PM2.5 exposure induced higher levels of AhR and CYP1A1 and oxidative stress as evidenced by the higher levels of ROS, MDA, and GSSG in kidneys of mice. PM2.5 exposure led to AhR overexpression and nuclear translocation in proximal renal tubular epithelial cells. Inhibition of AhR reduced CYP1A1 expression and PM2.5-increased levels of ROS, MDA and GSSG. Our study suggested metformin can mitigate PM2.5-induced oxidative stress by inhibiting the AhR/CYP1A1 pathway. These findings illuminated the role of AhR/CYP1A1 pathway in PM2.5-induced kidney injury and the protective effect of metformin on PM2.5-induced cellular damage, offering new insights for air pollution-related renal diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。