Intratumoral microbial heterogeneity affected tumor immune microenvironment and determined clinical outcome of HBV-related HCC

肿瘤内微生物异质性影响肿瘤免疫微环境并决定 HBV 相关 HCC 的临床结果

阅读:6
作者:Shengnan Li, Han Xia, Zeyu Wang, Xiehua Zhang, Tianqiang Song, Jia Li, Liang Xu, Ningning Zhang, Shu Fan, Qian Li, Qiaoling Zhang, Yingnan Ye, Jiayu Lv, Xiaofen Yue, Hongcheng Lv, Jinpu Yu, Wei Lu

Aims

The intratumoral microbiome has been reported to regulate the development and progression of cancers. We aimed to characterize intratumoral microbial heterogeneity (IMH) and establish microbiome-based molecular subtyping of HBV-related HCC to elucidate the correlation between IMH and HCC tumorigenesis. Approach and

Approach and results

A case-control study was designed to investigate microbial landscape and characteristic microbial signatures of HBV-related HCC tissues adopting metagenomics next-generation sequencing. Microbiome-based molecular subtyping of HCC tissues was established by nonmetric multidimensional scaling. The tumor immune microenvironment of 2 molecular subtypes was characterized by EPIC and CIBERSORT based on RNA-seq and verified by immunohistochemistry. The gene set variation analysis was adopted to explore the crosstalk between the immune and metabolism microenvironment. A prognosis-related gene risk signature between 2 subtypes was constructed by the weighted gene coexpression network analysis and the Cox regression analysis and then verified by the Kaplan-Meier survival curve.IMH demonstrated in HBV-related HCC tissues was comparably lower than that in chronic hepatitis tissues. Two microbiome-based HCC molecular subtypes, defined as bacteria- and virus-dominant subtypes, were established and significantly correlated with discrepant clinical-pathologic features. Higher infiltration of M2 macrophage was detected in the bacteria-dominant subtype with to the virus-dominant subtype, accompanied by multiple upregulated metabolism pathways. Furthermore, a 3-gene risk signature containing CSAG4 , PIP4P2 , and TOMM5 was filtered out, which could predict the clinical prognosis of HCC patients accurately using the Cancer Genome Atlas data. Conclusions: Microbiome-based molecular subtyping demonstrated IMH of HBV-related HCC was correlated with a disparity in clinical-pathologic features and tumor microenvironment (TME), which might be proposed as a biomarker for prognosis prediction of HCC.

Background and aims

The intratumoral microbiome has been reported to regulate the development and progression of cancers. We aimed to characterize intratumoral microbial heterogeneity (IMH) and establish microbiome-based molecular subtyping of HBV-related HCC to elucidate the correlation between IMH and HCC tumorigenesis. Approach and

Conclusions

Microbiome-based molecular subtyping demonstrated IMH of HBV-related HCC was correlated with a disparity in clinical-pathologic features and tumor microenvironment (TME), which might be proposed as a biomarker for prognosis prediction of HCC.

Results

A case-control study was designed to investigate microbial landscape and characteristic microbial signatures of HBV-related HCC tissues adopting metagenomics next-generation sequencing. Microbiome-based molecular subtyping of HCC tissues was established by nonmetric multidimensional scaling. The tumor immune microenvironment of 2 molecular subtypes was characterized by EPIC and CIBERSORT based on RNA-seq and verified by immunohistochemistry. The gene set variation analysis was adopted to explore the crosstalk between the immune and metabolism microenvironment. A prognosis-related gene risk signature between 2 subtypes was constructed by the weighted gene coexpression network analysis and the Cox regression analysis and then verified by the Kaplan-Meier survival curve.IMH demonstrated in HBV-related HCC tissues was comparably lower than that in chronic hepatitis tissues. Two microbiome-based HCC molecular subtypes, defined as bacteria- and virus-dominant subtypes, were established and significantly correlated with discrepant clinical-pathologic features. Higher infiltration of M2 macrophage was detected in the bacteria-dominant subtype with to the virus-dominant subtype, accompanied by multiple upregulated metabolism pathways. Furthermore, a 3-gene risk signature containing CSAG4 , PIP4P2 , and TOMM5 was filtered out, which could predict the clinical prognosis of HCC patients accurately using the Cancer Genome Atlas data. Conclusions: Microbiome-based molecular subtyping demonstrated IMH of HBV-related HCC was correlated with a disparity in clinical-pathologic features and tumor microenvironment (TME), which might be proposed as a biomarker for prognosis prediction of HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。