Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. extract relieves insulin resistance via PI3K/Akt signalling in diabetic Drosophila

白术和菟丝子提取物通过 PI3K/Akt 信号传导缓解糖尿病果蝇的胰岛素抵抗

阅读:6
作者:Yinghong Li, Ye Xu, Biwei Zhang, Zhigang Wang, Leilei Ma, Longyu Sun, Xiuping Wang, Yimin Lin, Ji-An Li, Chenxi Wu

Aim

Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure: The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro.

Conclusions

These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.

Results

AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions: These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。