Canonical and early lineage-specific stem cell types identified in planarian SirNeoblasts

在涡虫 SirNeoblasts 中鉴定的典型和早期谱系特异性干细胞类型

阅读:8
作者:Kaimeng Niu, Hao Xu, Yuanyi Zhou Xiong, Yun Zhao, Chong Gao, Chris W Seidel, Xue Pan, Yuqing Ying, Kai Lei

Background

The pluripotent stem cells in planarians, a model for tissue and cellular regeneration, remain further identification. We recently developed a method to enrich piwi-1+ cells in Schmidtea mediterranea, by staining cells with SiR-DNA and Cell Tracker Green, named SirNeoblasts that permits their propagation and subsequent functional study in vivo. Since traditional enrichment for planarian neoblasts by Hoechst 33342 staining generates X1 cells, blocking the cell cycle and inducing cytotoxicity, this method by SiR-DNA and Cell Tracker Green represents a complementary technological advance for functional investigation of cell fate and regeneration. However, the similarities in heterogeneity of cell subtypes between SirNeoblasts and X1 remain unknown.

Conclusions

In summary, the use of SirNeoblasts will enable broad experimental advances in regeneration and cell fate specification, given the possibility for propagation and transplantation of recombinant and mutagenized pluripotent stem cells that are not previously afforded to this rapid and versatile model system.

Results

In this work, we performed single cell RNA sequencing of SirNeoblasts for comparison with differential expression patterns in a publicly available X1 single cell RNA sequencing data. We found first that all of the lineage-specific progenitor cells in X1 were present in comparable proportions in SirNeoblasts. In addition, SirNeoblasts contain an early muscle progenitor that is unreported in X1. Analysis of new markers for putative pluripotent stem cells identified here, with subsequent sub-clustering analysis, revealed earlier lineages of epidermal, muscular, intestinal, and pharyngeal progenitors than have been observed in X1. Using the gcm as a marker, we also identified a cell subpopulation resided in previously identified tgs-1+ neoblasts. Knockdown of gcm impaired the neoblast repopulation, suggesting a function of gcm in neoblasts. Conclusions: In summary, the use of SirNeoblasts will enable broad experimental advances in regeneration and cell fate specification, given the possibility for propagation and transplantation of recombinant and mutagenized pluripotent stem cells that are not previously afforded to this rapid and versatile model system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。