S-allyl-cysteine attenuates carbon tetrachloride-induced liver fibrosis in rats by targeting STAT3/SMAD3 pathway

S-烯丙基半胱氨酸通过靶向 STAT3/SMAD3 通路减轻四氯化碳诱导的大鼠肝纤维化

阅读:5
作者:Zhiqiang Gong, Huisheng Ye, Yu Huo, Lei Wang, Yanhong Huang, Min Huang, Xingxing Yuan

Abstract

S-allyl-cysteine (SAC) is one of the major compounds in aged garlic extract, and has been proved to be an endogenous donor of hydrogen sulfide (H2S), which plays emerging roles in the gastrointestinal tract and liver. In this study, Sprague-Dawley rats were intraperitoneally injected with a mixture of carbon tetrachloride (CCl4, 1 mL/kg body weight) and olive oil (1:1 v/v) every other day for 8 weeks to induce liver fibrosis. Treatment of SAC (50 mg/kg/day) could attenuate CCl4-induced liver fibrosis, with improved semi-quantitative scores of fibrosis severity based on the staining of H&E, Oil Red O, and Sirius Red. SAC attenuated CCl4-induced transaminase elevation in the plasma of the rats. In the liver, SAC could reduce the mRNA expression of inflammatory and fibrogenic cytokines, including interleukin 6, interferon γ, tumor necrosis factor α, and transforming growth factor β (TGFβ), as well as induce the mRNA expression of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase. The mRNA expression of biomarkers of liver fibrosis, including α-smooth muscle actin, fibronectin and collagen I, were also decreased after SAC treatment. In addition, SAC reduced the phosphorylation of SMAD3 and signal transducers and activators of transcription 3, and further inhibited their binding ability to transcription promoters. Taken together, SAC attenuated CCl4-induced liver fibrosis in rats with anti-oxidant, anti-inflammatory and anti-fibrotic effects, and targeted STAT3/SMAD3 pathway to inhibit gene transcription.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。