Comparative analysis of the two extremes of FLNB-mutated autosomal dominant disease spectrum: from clinical phenotypes to cellular and molecular findings

FLNB 突变常染色体显性遗传疾病谱的两个极端的比较分析:从临床表型到细胞和分子发现

阅读:5
作者:Qiming Xu, Nan Wu, Lijia Cui, Mao Lin, D Thirumal Kumar, C George Priya Doss, Zhihong Wu, Jianxiong Shen, Xiangjian Song, Guixing Qiu

Abstract

Non-randomly distributed missense mutations of Filamin B (FLNB) can lead to a spectrum of autosomal dominant-inherited skeletal malformations caused by bone hypoplasia, including Larsen syndrome (LS), atelosteogenesi-I (AO-I), atelosteogenesi-I (AO-III) and boomerang dysplasia (BD). Among this spectrum of diseases, LS causes a milder hypoplasia of the skeletal system, compared to BD's much more severe symptoms. Previous studies revealed limited molecular mechanisms of FLNB-related diseases but most of them were carried out with HEK293 cells from the kidney which could not reproduce FLNB's specificity to skeletal tissues. Instead, we elected to use ATDC5, a chondrogenic stem cell line widely used to study endochondral osteogenesis. In this study, we established FLNB-transfected ATDC5 cell model. We reported a pedigree of LS with mutation of FLNBG1586R and reviewed a case of BD with mutation of FLNBL171R . Using the ATDC5 cell model above, we compared cellular and molecular phenotypes of BD-associated FLNBL171R and LS-associated FLNBG1586R . We found that while both phenotypes had an increased expression of Runx2, FLNBL171R-expressing ATDC5 cells presented globular aggregation of FLNB protein and increased cellular apoptosis rate while FLNBG1586R-expressing ATDC5 cells presented evenly distributed FLNB protein and decreased cellular migration. These findings support our explanation for the cause of differences in clinical phenotypes between LS and BD. Our study makes a comparative analysis of two extremes of the FLNB-mutated autosomal dominant spectrum, relating known clinical phenotypes to our new cellular and molecular findings. These results indicated next steps for future research on the role of FLNB in the physiological process of endochondral osteogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。