Fetal and neonatal dioxin exposure causes sex-specific metabolic alterations in mice

胎儿和新生儿接触二恶英会导致小鼠发生性别特异性代谢改变

阅读:5
作者:Myriam P Hoyeck, Rayanna C Merhi, Cameron Tulloch, Kaitlyn McCormick, Shahen Mohammed Abu Hossain, Antonio A Hanson, Jennifer E Bruin

Abstract

Epidemiological studies report associations between early-life exposure to persistent organic pollutants (POPs) and impaired metabolic homeostasis in adulthood. We investigated the impact of early-life exposure to low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or 'dioxin') on the establishment of β-cell area during the perinatal period, as well as β-cell health and glucose homeostasis later in life. Adult female mice were injected with either corn oil (CO; vehicle control) or TCDD (20 ng/kg/day) 2×/week throughout mating, pregnancy, and lactation; offspring were thus indirectly exposed to maternal TCDD in utero and during lactation, with pollutant exposure ending at weaning. All offspring were maintained on chow diet from weaning until 12-17 weeks of age, after which a subset of CO- and TCDD-exposed offspring were transferred to a 45% high fat diet (HFD) as a metabolic stressor for an additional 10 weeks. TCDD significantly upregulated cytochrome P450 1a1 (Cyp1a1) gene expression in offspring pancreas at birth and weaning, indicating that maternal TCDD directly reaches the developing pancreas. TCDD-exposed pups were transiently hypoglycemic at birth and females were born with reduced % β-cell area, which persisted into adulthood. Early-life TCDD exposure had no persistent long-term effects on glucose homeostasis in chow-fed offspring, but when transferred to HFD, TCDD-exposed female offspring had a delayed onset of HFD-induced hyperglycemia, more pronounced HFD-induced hyperinsulinemia, and increase % PCNA+ β-cells compared with CO-exposed female offspring. This study demonstrates that early-life exposure of mice to TCDD has modest effects on metabolic health in chow-fed offspring but alters metabolic adaptability to HFD feeding in females.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。