Generation of mouse model of TGFBI-R124C corneal dystrophy using CRISPR/Cas9-mediated homology-directed repair

利用 CRISPR/Cas9 介导的同源定向修复技术建立 TGFBI-R124C 角膜营养不良小鼠模型

阅读:8
作者:Kohdai Kitamoto #, Yukako Taketani #, Wataru Fujii, Aya Inamochi, Tetsuya Toyono, Takashi Miyai, Satoru Yamagami, Masahiko Kuroda, Tomohiko Usui, Yasuo Ouchi

Abstract

Mutations in transforming growth factor-beta-induced (TGFBI) gene cause clinically distinct types of corneal dystrophies. To delineate the mechanisms driving these dystrophies, we focused on the R124C mutation in TGFBI that causes lattice corneal dystrophy type1 (LCD1) and generated novel transgenic mice harbouring a single amino acid substitution of arginine 124 with cysteine in TGFBI via ssODN-mediated base-pair substitution using CRISPR/Cas9 technology. Eighty percent of homozygous and 9.1% of heterozygous TGFBI-R124C mice developed a corneal opacity at 40 weeks of age. Hematoxylin and eosin and Masson trichrome staining showed eosinophilic deposits in subepithelial corneal stroma that stained negative for Congo-red. Although amyloid deposition was not observed in TGFBI-R124C mice, irregular amorphous deposits were clearly observed via transmission electron microscopy near the basement membrane. Interestingly, we found that the corneal deposition of TGFBI protein (TGFBIp) was significantly increased in homozygous TGFBI-R124C mice, suggesting a pathogenic role for the mutant protein accumulation. Furthermore, as observed in the LCD1 patients, corneal epithelial wound healing was significantly delayed in TGFBI-R124C mice. In conclusion, our novel mouse model of TGFBI-R124C corneal dystrophy reproduces features of the human disease. This mouse model will help delineate the pathogenic mechanisms of human corneal dystrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。