BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma

BCAT2 介导的 BCAA 分解代谢对于胰腺导管腺癌的发展至关重要

阅读:8
作者:Jin-Tao Li #, Miao Yin #, Di Wang #, Jian Wang, Ming-Zhu Lei, Ye Zhang, Ying Liu, Lei Zhang, Shao-Wu Zou, Li-Peng Hu, Zhi-Gang Zhang, Yi-Ping Wang, Wen-Yu Wen, Hao-Jie Lu, Zheng-Jun Chen, Dan Su, Qun-Ying Lei

Abstract

Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)1-4. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA-BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC3,4. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of Bcat2 impedes progression of pancreatic intraepithelial neoplasia (PanIN) in LSL-KrasG12D/+; Pdx1-Cre (KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain α-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring KRAS mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。