Glycocalyx components affect platelet function, whole blood coagulation, and fibrinolysis: an in vitro study suggesting a link to trauma-induced coagulopathy

糖萼成分影响血小板功能、全血凝固和纤维蛋白溶解:一项体外研究表明与创伤诱发的凝血病有关

阅读:6
作者:Martin W Britten, Laura Lümers, Kenji Tominaga, Jürgen Peters, Daniel Dirkmann

Background

The mechanisms of trauma induced coagulopathy (TIC) are considered multifactorial. Amongst others, however, shedding of the endothelial glycocalyx resulting in increased concentrations of glycocalyx fragments in plasma might also play a role. Thus, we hypothesized that shedded glycocalyx components affect coagulation and may act as humoral mediators of TIC.

Conclusions

Glycocalyx components exert distinct inhibitory effects on platelet function, coagulation, and fibrinolysis. These data do not support a 'heparin-like auto-anticoagulation' by shed glycosaminoglycans but suggest a possible role of versican in trauma-induced thrombocytopathy and of thrombomodulin in trauma-associated impairment of endogenous fibrinolysis.

Methods

To investigate effects of heparan sulfate, chondroitin sulfate, syndecan-1, versican, and thrombomodulin we added these fragments to in vitro assays of whole blood from healthy volunteers to yield concentrations observed in trauma patients. Platelet function, whole blood coagulation, and fibrinolysis were measured by standard coagulation tests, impedance aggregometry (IA), and viscoelastic tests (VET). To assess dose-response relationships, we performed IA with increasing concentrations of versican and VET with increasing concentrations of thrombomodulin.

Results

Intrinsically activated clotting times (i.e., activated partial thromboplastin time and intrinsically activated VET with and without heparinase) were unaffected by any glycocalyx fragment. Thrombomodulin, however, significantly and dose-dependently diminished fibrinolysis as assessed by VET with exogenously added rt-PA, and increased rt-PA-induced lysis Indices after 30 (up to 108% of control, p < 0,0001), 45 (up to 368% of control, p < 0,0001), and 60 min (up to 950% of control, p < 0,0001) in VET. Versican impaired platelet aggregation in response to arachidonic acid (up to - 37,6%, p < 0,0001), ADP (up to - 14,5%, p < 0,0001), and collagen (up to - 31,8%, p < 0,0001) in a dose-dependent manner, but did not affect TRAP-6 induced platelet aggregation. Clotting time in extrinsically activated VET was shortened by heparan sulfate (- 7,2%, p = 0,024), chondroitin sulfate (- 11,6%, p = 0,016), versican (- 13%, p = 0,012%), and when combined (- 7,2%, p = 0,007). Conclusions: Glycocalyx components exert distinct inhibitory effects on platelet function, coagulation, and fibrinolysis. These data do not support a 'heparin-like auto-anticoagulation' by shed glycosaminoglycans but suggest a possible role of versican in trauma-induced thrombocytopathy and of thrombomodulin in trauma-associated impairment of endogenous fibrinolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。