Conclusions
In addition to stimulating invasion and metastasis of melanoma cells, the results suggested that CCN4/WISP1 repressed cell growth and simultaneously enhanced cell survival.
Methods
To test whether CCN4/WISP1 also influences the proliferative phenotype of melanoma cells, we used mouse melanoma models and knocked out Ccn4 using a homology-directed repair CRISPR/Cas9 system to generate pools of Ccn4-knockout cells. The resulting edited cell pools were compared to parental cell lines using an ensemble of in vitro and in vivo assays.
Results
In vitro assays using knockout pools supported previous findings that CCN4/WISP1 promoted an epithelial-mesenchymal-like transition in melanoma cells and stimulated invasion and metastasis. While Ccn4 knockout also enhanced cell growth in optimal 2D culture conditions, the knockout suppressed certain cell survival signaling pathways and rendered cells less resistant to stress conditions. Tumor cell growth assays at sub-optimal conditions in vitro, quantitative analysis of tumor growth assays in vivo, and transcriptomics analysis of human melanoma cell lines were also used to quantify changes in phenotype and generalize the findings. Conclusions: In addition to stimulating invasion and metastasis of melanoma cells, the results suggested that CCN4/WISP1 repressed cell growth and simultaneously enhanced cell survival.
