Deletion of the Ebf1, a mouse deafness gene, causes a dramatic increase in hair cells and support cells of the organ of Corti

删除小鼠耳聋基因 Ebf1 会导致柯蒂氏器的毛细胞和支持细胞急剧增加

阅读:4
作者:Kathryn G Powers, Brent A Wilkerson, Kylie E Beach, Sophie S Seo, Jose S Rodriguez, Ashton N Baxter, Sarah E Hunter, Olivia Bermingham-McDonogh

Abstract

Following up on our previous observation that early B cell factor (EBF) sites are enriched in open chromatin of the developing sensory epithelium of the mouse cochlea, we investigated the effect of deletion of Ebf1 on inner ear development. We used a Cre driver to delete Ebf1 at the otocyst stage before development of the cochlea. We examined the cochlea at postnatal day (P) 1 and found that the sensory epithelium had doubled in size but the length of the cochlear duct was unaffected. We also found that deletion of Ebf1 led to ectopic sensory patches in the Kölliker's organ. Innervation of the developing organ of Corti was disrupted with no obvious spiral bundles. The ectopic patches were also innervated. All the extra hair cells (HCs) within the sensory epithelium and Kölliker's organ contained mechanoelectrical transduction channels, as indicated by rapid uptake of FM1-43. The excessive numbers of HCs were still present in the adult Ebf1 conditional knockout (cKO) animal. The animals had significantly elevated auditory brainstem response thresholds, suggesting that this gene is essential for hearing development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。