Development of a Linker-Mediated Immunoassay Using Chemically Transitioned Nanosensors

利用化学转变纳米传感器开发接头介导免疫测定

阅读:5
作者:Lucas D Smith, Michael C Willard, Jordan P Smith, Brian T Cunningham

Abstract

Sensitive and specific quantification of protein biomarkers is important in medical diagnostics, academic research, and pharmaceutical development. However, multiple binding steps in conventional sandwich immunoassay protocols result in high assay hands-on-time and delayed results. This is particularly relevant for medical diagnostics, where assay turn-around-time can have an immense impact on patient outcomes. To address this limitation, we report the assembly of nanosensors prepared using DNA-antibody conjugates, which combine capture and detection antibody binding steps by facilitating rapid antigen capture. Following antigen binding, detection antibodies are released using chemically induced complex rearrangement. A panel of 12 chemical additives are characterized to identify melting point depressants capable of rapidly denaturing double stranded DNA (dsDNA) linkers, and 8 compounds are demonstrated to be capable of disrupting dsDNA while maintaining the integrity of protein binding. This technique is then validated for the measurement of the heart attack indicator cardiac troponin I and is shown to successfully combine antigen binding steps while also increasing detection sensitivity 42×. Linker-mediated immunoassays are also demonstrated to provide robust quantification in human serum and are shown to be compatible with each of the most commonly used immunoassay detection modalities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。