Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis

Ezh2 的缺失与 JAK2-V617F 协同作用,引发骨髓增生性肿瘤并促进骨髓纤维化

阅读:6
作者:Takafumi Shimizu, Lucia Kubovcakova, Ronny Nienhold, Jakub Zmajkovic, Sara C Meyer, Hui Hao-Shen, Florian Geier, Stephan Dirnhofer, Paola Guglielmelli, Alessandro M Vannucchi, Jelena D Milosevic Feenstra, Robert Kralovics, Stuart H Orkin, Radek C Skoda

Abstract

Myeloproliferative neoplasm (MPN) patients frequently show co-occurrence of JAK2-V617F and mutations in epigenetic regulator genes, including EZH2 In this study, we show that JAK2-V617F and loss of Ezh2 in hematopoietic cells contribute synergistically to the development of MPN. The MPN phenotype induced by JAK2-V617F was accentuated in JAK2-V617F;Ezh2(-/-) mice, resulting in very high platelet and neutrophil counts, more advanced myelofibrosis, and reduced survival. These mice also displayed expansion of the stem cell and progenitor cell compartments and a shift of differentiation toward megakaryopoiesis at the expense of erythropoiesis. Single cell limiting dilution transplantation with bone marrow from JAK2-V617F;Ezh2(+/-) mice showed increased reconstitution and MPN disease initiation potential compared with JAK2-V617F alone. RNA sequencing in Ezh2-deficient hematopoietic stem cells (HSCs) and megakaryocytic erythroid progenitors identified highly up-regulated genes, including Lin28b and Hmga2, and chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) analysis of their promoters revealed decreased H3K27me3 deposition. Forced expression of Hmga2 resulted in increased chimerism and platelet counts in recipients of retrovirally transduced HSCs. JAK2-V617F-expressing mice treated with an Ezh2 inhibitor showed higher platelet counts than vehicle controls. Our data support the proposed tumor suppressor function of EZH2 in patients with MPN and call for caution when considering using Ezh2 inhibitors in MPN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。