Inhibition of Autophagy Facilitates XY03-EA-Mediated Neuroprotection against the Cerebral Ischemia/Reperfusion Injury in Rats

抑制自噬促进XY03-EA介导的神经保护作用对抗大鼠脑缺血/再灌注损伤

阅读:7
作者:Wenwen Cui, Yuanyuan Hao, Mingye Wang, Qiuyan Zhang, Junmei Wang, Gang Wei, Yunlong Hou

Conclusions

In this study, we found that XY03-EA alleviated the cerebral I/R injuries in rats and nonhuman primates. Our results demonstrated that XY03-EA exerted neuroprotective effects against the ROS-mediated autophagic neurocyte death and had great potential for the treatment of ischemic stroke.

Methods

For this purpose, behavioral scores, cerebral infarct volume, cerebral blood flow, oxidative stress levels, inflammatory factor expression, energy metabolism levels, and autophagy activation were estimated in the rat middle cerebral artery occlusion and reperfusion (MCAO/R) model. The nonhuman primate MCAO/R model was conducted to validate the therapeutic effect of XY03-EA applied for 3 weeks. The neurological deficit score (NDS) progression rate and the infarct volume were continuously recorded on days 3, 7, 14, and 21. The PC-12 cell OGD/R model was used to assess the cell survival rate, reactive oxygen species (ROS) levels, the expression of autophagy execution molecules, and the activation of autophagy-related signaling pathways.

Objective

L-3-n-Butylphthalide (NBP) is used to treat moderate and severe acute ischemia stroke. A previous screening study indicates that XY03-EA, a novel derivative of NBP, is more potent than NBP in the oxyradical scavenging capacity. In this study, in vivo and in vitro ischemia/reperfusion (I/R) models were used to test whether the XY03-EA offered therapeutic benefits in the ischemic stroke and explore the underlying mechanism of action.

Results

XY03-EA decreased the cerebral injuries and NDS by increasing cerebral blood flow, improving brain energy metabolism, accelerating ROS clearance, suppressing inflammatory responses, and inhibiting autophagy in the MCAO/R model rats. In the nonhuman primate MCAO/R model, the treatment of XY03-EA for 3 weeks could significantly inhibit the NDS progression rate and indicate a positive trend to reduce the infarct volume in a dose-dependent way. Mechanistically, XY03-EA inhibited ROS-dependent autophagy activation and thereby protected the PC-12 cells from the autophagic cell death induced by OGD/R. Conclusions: In this study, we found that XY03-EA alleviated the cerebral I/R injuries in rats and nonhuman primates. Our results demonstrated that XY03-EA exerted neuroprotective effects against the ROS-mediated autophagic neurocyte death and had great potential for the treatment of ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。