GIBBERELLIN PERCEPTION SENSOR 2 reveals genesis and role of cellular GA dynamics in light-regulated hypocotyl growth

赤霉素感知传感器 2 揭示细胞赤霉素动力学在光调节下胚轴生长中的起源和作用

阅读:5
作者:Jayne Griffiths, Annalisa Rizza, Bijun Tang, Wolf B Frommer, Alexander M Jones

Abstract

The phytohormone gibberellic acid (GA) is critical for environmentally sensitive plant development including germination, skotomorphogenesis, and flowering. The Förster resonance energy transfer biosensor GIBBERELLIN PERCEPTION SENSOR1, which permits single-cell GA measurements in vivo, has been used to observe a GA gradient correlated with cell length in dark-grown, but not light-grown, hypocotyls. We sought to understand how light signaling integrates into cellular GA regulation. Here, we show how the E3 ligase CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) play central roles in directing cellular GA distribution in skoto- and photomorphogenic hypocotyls, respectively. We demonstrate that the expression pattern of the GA biosynthetic enzyme gene GA20ox1 is the key determinant of the GA gradient in dark-grown hypocotyls and is a target of COP1 signaling. We engineered a second generation GPS2 biosensor with improved orthogonality and reversibility. GPS2 revealed a previously undetectable cellular pattern of GA depletion during the transition to growth in the light. This GA depletion partly explains the resetting of hypocotyl growth dynamics during photomorphogenesis. Achieving cell-level resolution has revealed how GA distributions link environmental conditions with morphology and morphological plasticity. The GPS2 biosensor is an ideal tool for GA studies in many conditions, organs, and plant species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。