Creation of a spatially complex mucus bilayer on an in vitro colon model

在体外结肠模型上创建空间复杂的粘液双层

阅读:4
作者:Cecilia Villegas-Novoa, Yuli Wang, Christopher E Sims, Nancy L Allbritton

Abstract

The colonic epithelium is comprised of three-dimensional crypts (3D) lined with mucus secreted by a heterogeneous population of goblet cells. In this study, we report the formation of a long-lived, and self-renewing replica of human 3D crypts with a mucus layer patterned in the X-Y-Z dimensions. Primary colon cells were cultured on a shaped scaffold under an air-liquid interface to yield architecturally accurate crypts with a mucus bilayer (605 ± 180 μm thick) possessing an inner (149 ± 50 μm) and outer (435 ± 111 μm) region. Lectins with distinct carbohydrate-binding preferences demonstrated that the mucus in the intercrypt regions was chemically distinct from that above and within the crypts replicating in vivo chemical patterning. Constitutive mucus secretion ejected beads from crypt lumens in 8-10 days, while agonist-stimulated secretion increased mucus thickness by 17-fold in 8 h. The tissue was long-lived, > 50 days, the longest time assessed. In conclusion, the in vitro mucus replicated key physiology of the human mucus, including the bilayer (Z) structure and intercrypt-crypt (X-Y) zones, constitutive mucus flow, spatially complex chemical attributes, and mucus secretion response to stimulation, with the potential to reveal local and global determinants of mucus function and its breakdown in disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。