Telmisartan exerts pleiotropic effects in endothelial cells and promotes endothelial cell quiescence and survival

替米沙坦在内皮细胞中发挥多效性作用,促进内皮细胞静止和存活

阅读:5
作者:Mauro Siragusa, William C Sessa

Approach and results

In human umbilical vein ECs, microarray analysis of gene expression followed by pathway enrichment analysis and quantitative polymerase chain reaction validation revealed that telmisartan modulates the expression of key genes responsible for cell cycle progression and apoptosis. Amlodipine's effect was similar to control. ECs exposed to telmisartan, but not amlodipine, losartan, or valsartan, exhibited a dose-dependent impairment of cell growth and failed to enter the S-phase of the cell cycle. Similarly, telmisartan inhibited proliferation in COS-7 cells lacking the angiotensin II type 1 receptor. In telmisartan-treated ECs, phosphorylation and activation of Akt, as well as MDM2, were reduced, leading to accumulation of p53 in the nucleus, where it represses the transcription of cell cycle-promoting genes. Phosphorylation of glycogen synthase kinase-3β was also reduced, resulting in rapid proteolytic turnover of CyclinD1. Telmisartan induced downregulation of proapoptotic genes and protected ECs from serum starvation-induced and 7-ketocholesterol-induced apoptosis. Conclusions: Telmisartan exerts antiproliferative and antiapoptotic effects in ECs. This may account for the improved endothelial dysfunction observed in the clinical setting.

Conclusions

Telmisartan exerts antiproliferative and antiapoptotic effects in ECs. This may account for the improved endothelial dysfunction observed in the clinical setting.

Objective

Telmisartan, an angiotensin II type 1 receptor blocker, and amlodipine, a calcium channel blocker, are antihypertensive agents clinically used as monotherapy or in combination. They exert beneficial cardiovascular effects independently of blood pressure lowering and classic mechanisms of action. In this study, we investigate molecular mechanisms responsible for the off-target effects of telmisartan and telmisartan-amlodipine in endothelial cells (ECs), using an unbiased genomic approach. Approach and

Results

In human umbilical vein ECs, microarray analysis of gene expression followed by pathway enrichment analysis and quantitative polymerase chain reaction validation revealed that telmisartan modulates the expression of key genes responsible for cell cycle progression and apoptosis. Amlodipine's effect was similar to control. ECs exposed to telmisartan, but not amlodipine, losartan, or valsartan, exhibited a dose-dependent impairment of cell growth and failed to enter the S-phase of the cell cycle. Similarly, telmisartan inhibited proliferation in COS-7 cells lacking the angiotensin II type 1 receptor. In telmisartan-treated ECs, phosphorylation and activation of Akt, as well as MDM2, were reduced, leading to accumulation of p53 in the nucleus, where it represses the transcription of cell cycle-promoting genes. Phosphorylation of glycogen synthase kinase-3β was also reduced, resulting in rapid proteolytic turnover of CyclinD1. Telmisartan induced downregulation of proapoptotic genes and protected ECs from serum starvation-induced and 7-ketocholesterol-induced apoptosis. Conclusions: Telmisartan exerts antiproliferative and antiapoptotic effects in ECs. This may account for the improved endothelial dysfunction observed in the clinical setting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。