Resistin-like molecule β is abundantly expressed in foam cells and is involved in atherosclerosis development

抵抗素样分子 β 在泡沫细胞中大量表达,参与动脉粥样硬化的发展

阅读:5
作者:Akifumi Kushiyama, Hideyuki Sakoda, Naohide Oue, Masamichi Okubo, Yusuke Nakatsu, Haruya Ono, Toshiaki Fukushima, Hideaki Kamata, Fusanori Nishimura, Takako Kikuchi, Midori Fujishiro, Koichi Nishiyama, Hiroyuki Aburatani, Sakura Kushiyama, Masaki Iizuka, Naoyuki Taki, Jeffrey Encinas, Kazuhiro Senta

Approach and results

It was demonstrated that foam cells in atherosclerotic lesions of the human coronary artery abundantly express RELMβ. RELMβ knockout ((-/-)) and wild-type mice were mated with apolipoprotein E-deficient background mice. RELMβ(-/-) apolipoprotein E-deficient mice exhibited less lipid accumulation in the aortic root and wall than RELMβ(+/+) apolipoprotein E-deficient mice, without significant changes in serum lipid parameters. In vitro, RELMβ(-/-) primary cultured peritoneal macrophages (PCPMs) exhibited weaker lipopolysaccharide-induced nuclear factor-κB classical pathway activation and inflammatory cytokine secretion than RELMβ(+/+), whereas stimulation with RELMβ upregulated inflammatory cytokine expressions and increased expressions of many lipid transporters and scavenger receptors in PCPMs. Flow cytometric analysis revealed inflammatory stimulation-induced RELMβ in F4/80(+) CD11c(+) PCPMs. In contrast, the expressions of CD11c and tumor necrosis factor were lower in RELMβ(-/-) PCPMs, but both were restored by stimulation with recombinant RELMβ. Conclusions: RELMβ is abundantly expressed in foam cells within plaques and contributes to atherosclerosis development via lipid accumulation and inflammatory facilitation.

Conclusions

RELMβ is abundantly expressed in foam cells within plaques and contributes to atherosclerosis development via lipid accumulation and inflammatory facilitation.

Objective

Resistin-like molecule (RELM) β is a secretory protein homologous to resistin and reportedly contributes to local immune response regulation in gut and bronchial epithelial cells. However, we found that activated macrophages also express RELMβ and thus investigated the role of RELMβ in the development of atherosclerosis. Approach and

Results

It was demonstrated that foam cells in atherosclerotic lesions of the human coronary artery abundantly express RELMβ. RELMβ knockout ((-/-)) and wild-type mice were mated with apolipoprotein E-deficient background mice. RELMβ(-/-) apolipoprotein E-deficient mice exhibited less lipid accumulation in the aortic root and wall than RELMβ(+/+) apolipoprotein E-deficient mice, without significant changes in serum lipid parameters. In vitro, RELMβ(-/-) primary cultured peritoneal macrophages (PCPMs) exhibited weaker lipopolysaccharide-induced nuclear factor-κB classical pathway activation and inflammatory cytokine secretion than RELMβ(+/+), whereas stimulation with RELMβ upregulated inflammatory cytokine expressions and increased expressions of many lipid transporters and scavenger receptors in PCPMs. Flow cytometric analysis revealed inflammatory stimulation-induced RELMβ in F4/80(+) CD11c(+) PCPMs. In contrast, the expressions of CD11c and tumor necrosis factor were lower in RELMβ(-/-) PCPMs, but both were restored by stimulation with recombinant RELMβ. Conclusions: RELMβ is abundantly expressed in foam cells within plaques and contributes to atherosclerosis development via lipid accumulation and inflammatory facilitation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。