Lysosome-Associated Membrane Protein 3 Induces Lysosome-Dependent Cell Death by Impairing Autophagic Caspase 8 Degradation in the Salivary Glands of Individuals With Sjögren's Disease

溶酶体相关膜蛋白3通过抑制干燥综合征患者唾液腺中自噬性半胱天冬酶8的降解,诱导溶酶体依赖性细胞死亡

阅读:1
作者:Hiroyuki Nakamura # ,Tsutomu Tanaka # ,Changyu Zheng ,Sandra A Afione ,Blake M Warner ,Masayuki Noguchi ,Tatsuya Atsumi ,John A Chiorini

Abstract

Objective: Lysosome-associated membrane protein 3 (LAMP3) overexpression is implicated in the development and progression of Sjögren's disease (SjD) by inducing lysosomal membrane permeabilization (LMP) and apoptotic cell death in salivary gland epithelium. The aim of this study was to clarify the molecular details of LAMP3-induced lysosome-dependent cell death and to test lysosomal biogenesis as a therapeutic intervention. Methods: Human labial minor salivary gland biopsies were analyzed using immunofluorescence staining for LAMP3 expression levels and galectin-3 puncta formation, a marker of LMP. Expression level of caspase 8, an initiator of LMP, was determined by Western blotting in cell culture. Galectin-3 puncta formation and apoptosis were evaluated in cell cultures and a mouse model treated with glucagon-like peptide 1 receptor (GLP-1R) agonists, a known promoter of lysosomal biogenesis. Results: Galectin-3 puncta formation was more frequent in the salivary glands of SjD patients compared to control glands. The proportion of galectin-3 puncta-positive cells was positively correlated with LAMP3 expression levels in the glands. LAMP3 overexpression increased caspase 8 expression, and knockdown of caspase 8 decreased galectin-3 puncta formation and apoptosis in LAMP3-overexpressing cells. Inhibition of autophagy increased caspase 8 expression, while restoration of lysosomal function using GLP-1R agonists decreased caspase 8 expression, which reduced galectin-3 puncta formation and apoptosis in both LAMP3-overexpressing cells and mice. Conclusion: LAMP3 overexpression induced lysosomal dysfunction, resulting in lysosome-dependent cell death via impaired autophagic caspase 8 degradation, and restoring lysosomal function using GLP-1R agonists could prevent this. These findings suggested that LAMP3-induced lysosomal dysfunction is central to disease development and is a target for therapeutic intervention in SjD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。