Targeting Nicotinamide N-Methyltransferase and miR-449a in EGFR-TKI-Resistant Non-Small-Cell Lung Cancer Cells

针对 EGFR-TKI 耐药非小细胞肺癌细胞中的烟酰胺 N-甲基转移酶和 miR-449a

阅读:5
作者:Duc-Hiep Bach, Donghwa Kim, Song Yi Bae, Won Kyung Kim, Ji-Young Hong, Hye-Jung Lee, Nirmal Rajasekaran, Soonbum Kwon, Yanhua Fan, Thi-Thu-Trang Luu, Young Kee Shin, Jeeyeon Lee, Sang Kook Lee

Abstract

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used clinically as target therapies for lung cancer patients, but the occurrence of acquired drug resistance limits their efficacy. Nicotinamide N-methyltransferase (NNMT), a cancer-associated metabolic enzyme, is commonly overexpressed in various human tumors. Emerging evidence also suggests a crucial loss of function of microRNAs (miRNAs) in modulating tumor progression in response to standard therapies. However, their precise roles in regulating the development of drug-resistant tumorigenesis are still poorly understood. Herein, we established EGFR-TKI-resistant non-small-cell lung cancer (NSCLC) models and observed a negative correlation between the expression levels of NNMT and miR-449a in tumor cells. Additionally, knockdown of NNMT suppressed p-Akt and tumorigenesis, while re-expression of miR-449a induced phosphatase and tensin homolog (PTEN), and inhibited tumor growth. Furthermore, yuanhuadine, an antitumor agent, significantly upregulated miR-449a levels while critically suppressing NNMT expression. These findings suggest a novel therapeutic approach for overcoming EGFR-TKI resistance to NSCLC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。