Hawthorn leaves flavonoids attenuate cardiac remodeling induced by simulated microgravity

山楂叶黄酮类化合物可减轻模拟微重力引起的心脏重塑

阅读:5
作者:Tian Liu, Yuqi Ma, Hui Zhao, Pengli Wang, Yan Niu, Yuehuan Hu, Xi Shen, Mingxia Zhang, Bing Yan, Jun Yu

Conclusions

HLF plays a protective effect on HU-induced cardiac remodelling by enhancing NPRA-cGMP-PKG pathway and suppressing the calcineurin-NFAT pathway, which provides a theoretical basis for use in clinical therapies.

Methods

Adult male Sprague-Dawley rats were divided into control, HLF, HU (hindlimb unloading) and HU + HLF groups (n = 8). After HU and daily intragastric administration at the dose of 100 mg/kg/d for 8 weeks, cardiac function and structure were evaluated by biochemical indices and histopathology. We identified the main active compounds and mechanisms involved in the cardioprotective effects of HLF via bioinformatics and molecular docking analysis, and relative signalling pathway activity was verified by Western blot.

Objective

The study evaluated the protective role of HLF in cardiac remodelling and the underlying mechanisms under simulated microgravity by hindlimb unloading rats. Materials and

Results

HLF treatment could reverse the HU-induced decline in LV-EF (HU, 55.13% ± 0.98% vs. HU + HLF, 71.16% ± 5.08%), LV-FS (HU, 29.44% ± 0.67% vs. HU + HLF, 41.62% ± 4.34%) and LV mass (HU, 667.99 ± 65.69 mg vs. HU + HLF, 840.02 ± 73.00 mg). Furthermore, HLF treatment significantly increased NPRA expression by 135.39%, PKG by 51.27%, decreased PDE5A by 20.03%, NFATc1 by 41.68% and Rcan1.4 by 54.22%. Conclusions: HLF plays a protective effect on HU-induced cardiac remodelling by enhancing NPRA-cGMP-PKG pathway and suppressing the calcineurin-NFAT pathway, which provides a theoretical basis for use in clinical therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。